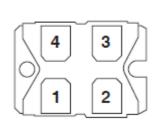


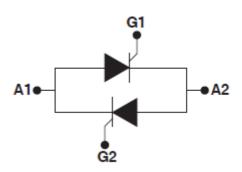
MSS40 / MSS50 Series

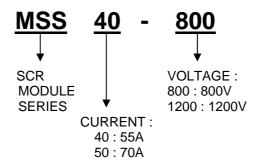
BACK TO BACK SCR MODULE

The MSS40 / MSS50 Series is based on two back-to-back SCR configurations, providing high noise immunity. They are suitable for high power applications.

The compactness of the SOT-227 package allows high power density and optimized power bus connections. Compliance to RoHS.


SOT-227


MAIN FEATURES


I_{T(RMS)}: 55 and 70 A
 V_{DRM}/V_{RRM}: 800 and 1200 V

• I_{GT}: 50 mA

1 : Thyristor 2 Anode (A2) 2 : Thyristor 2 Gate (G2) 3 : Thyristor 1 Anode (A1) 4 : Thyristor 1 Gate (G1)

MSS40 / MSS50 Series

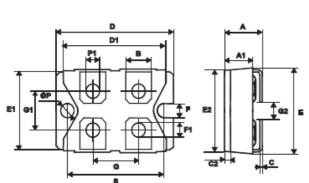
ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings			Val	Unit	
Symbol				MSS40	MSS50	Oilit
I _{T(RMS)}	RMS on-state current	$T_C = 80 ^{\circ}\text{C}$ $T_C = 85 ^{\circ}\text{C}$	55 -	- 70	А	
I _{TSM}	Non repetitive surge peak on-state current	$t_p = 16.7 ms$ $t_p = 20 ms$	T _j = 25 °C	420 400	630 600	Α
l ² t	I ² t Value for fusing	$t_p = 10ms$	T _i = 25 °C	800	1800	A ² s
DI/dt	Critical rate of rise of on- state current $I_G = 2xI_{GT}$, tr ≤ 100 ns	T _j = 125 °C	50		A/µs	
I _{GM}	Peak gate current	T _j = 125 °C	4		Α	
P _{G(AV)}	Average gate power dissipation $T_j = 125 ^{\circ}\text{C}$,	W	
Tj	Operating junction temperature range			-40 to +125		°C
T _{stg}	Storage junction temperature range			-40 to		
V_{RGM}	Maximum peak reverse gate voltage			5	V	

THERMAL CHARACTERISTICS

Symbol	Ratings		Value	Unit	
R _{th(j-c)}	Junction to case (AC)	MSS40	0.6	°C/W	
		MSS50	0.45	C/VV	

MSS40 / MSS50 Series


ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Test Conditions			Min	Тур	Max	Unit
I _{DRM}	V _{DRM} = V _{DRM} Rated	T _j = 25 °C	MSS40	-	-	20	μΑ
			MSS50				
		T _j = 125 °C	MSS40	-	-	10	mA
			MSS50				
	V _{RRM} = V _{RRM} Rated	T _j = 25 °C	MSS40	_	-	20	μA
I _{RRM}			MSS50				
		T _i = 125 °C	MSS40	-	-	10	mA
		,	MSS50				
I _{GT}	$V_{D} = 12 \text{ V}, R_{L} = 33 \Omega$		MSS40	5	-	50	mA
-01			MSS50				
V _{GT}	$V_D = 12 \text{ V}, R_1 = 33 \Omega$		MSS40	-	-	1.3	V
- 01		т	MSS50				
V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	T _j = 125 °C	MSS40	0.2	-	-	V
- 65			MSS50				
I _H	$I_T = 500 \text{ mA}$ Gate open		MSS40	-	-	80	mA
-11		T	MSS50				
V _{TM}	$I_{TM} = 80A$ $t_p = 380 \mu s$	T _i = 25 °C	MSS40	-	-	1.7	V
	$I_{TM} = 100A t_p = 380 \mu s$	11 - 20 0	MSS50	-	-	1.7	•
I _L	$I_G = 1.2xI_{GT}$		MSS40	_	-	120	mA
			MSS50				
dV/dt	$V_D = 67\% V_{DRM}$ Gate open	T _j = 125 °C	MSS40	1000	-	-	V/µs
αν/ατ			MSS50				
V _{t0}	Threshold voltage	T _j = 125 °C	MSS40	-	-	0.85	V
			MSS50				
R _d	Dynamic resistance	T _j = 125 °C	MSS40	-	-	11	
			MSS50	-	-	7	mΩ

MSS40 / MSS50 Series MECHANICAL DATA CASE SOT-227

	DIMENSIONS					
REF.	Millin	neters	Inches			
	Min.	Max.	Min.	Max.		
Α	11.80	12.20	0.465	0.480		
A1	8.90	9.10	0.350	0.358		
В	7.8	8.20	0.307	0.323		
C	0.75	0.85	0.030	0.033		
C2	1.95	2.05	0.077	0.081		
D	37.80	38.20	1.488	1.504		
D1	31.50	31.70	1.240	1.248		
Е	25.15	25.50	0.990	1.004		
E1	23.85	24.15	0.939	0.951		
E2	24.80	0 typ.	0.976 typ.			
G	14.90	15.10	0.587	0.594		
G1	12.60	12.80	0.496	0.504		
G2	3.50	4.30	0.138	0.169		
F	4.10	4.30	0.161	0.169		
F1	4.60	5.00	0.181	0.197		
Р	4.00	4.30	0.157	0.69		
P1	4.00	4.40	0.157	0.173		
S	30.10	30.30	1.185	1.193		

Revised September 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com